

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

High-resolution Chest CT Features and Clinical Characteristics of Patients Infected with COVID-19 in Jiangsu, China

Hui Dai Xin Zhang Jianguo Xia Tao Zhang Yalei Shang Renjun Huang Rongrong Liu Dan Wang Min Li Jinping Wu Qiuzhen Xu Yonggang Li

PII:	S1201-9712(20)30218-6
DOI:	https://doi.org/doi:10.1016/j.ijid.2020.04.003
Reference:	IJID 4091
To appear in:	International Journal of Infectious Diseases
Received Date:	26 February 2020
Revised Date:	30 March 2020
Accepted Date:	1 April 2020

Please cite this article as: Dai H, Zhang X, Xia J, Zhang T, Shang Y, Huang R, Liu R, Wang D, Li M, Wu J, Xu Q, Li Y, High-resolution Chest CT Features and Clinical Characteristics of Patients Infected with COVID-19 in Jiangsu, China, *International Journal of Infectious Diseases* (2020), doi: https://doi.org/10.1016/j.ijid.2020.04.003

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier.

1	Title: High-resolution Chest CT Features and Clinical Characteristics of Patients Infected with
2	COVID-19 in Jiangsu, China
3	
4	Author list
5	Hui Dai ^{#a,b} , Xin Zhang ^{#c} , Jianguo Xia ^d , Tao Zhang ^e , Yalei Shang ^a , Renjun Huang ^a , Rongrong Liu ^f ,
6	Dan Wang ^g , Min Li ^{*f} , Jinping Wu ^{*g} , Qiuzhen Xu ^{*h} , Yonggang Li ^{*a,b}
7	
8	a Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou city,
9	Jiangsu province, P.R.China 215000
10	b Institute of Medical Imaging, Soochow University, Suzhou city, Jiangsu province, P.R.China
11	215000
12	_c Department of Radiology, the Fourth People's Hospital of Huaian, Huai'an city, Jiangsu province,
13	P.R.China 223001
14	d Department of Radiology, Taizhou People's Hospital, Hospital Affiliated 5 to Nantong University,
15	Taizhou city, Jiangsu province, P.R.China 225300
16	e Department of Radiology, the Third Hospital Affiliated of Nantong University, Nantong City,
17	Jiangsu province, P.R.China 226000
18	f Department of Radiology, The Affiliated Infectious Diseases Hospital of Soochow University,
19	Suzhou city, Jiangsu province, P.R.China 215000
20	g Department of Radiology, the Third People's Hospital of Changzhou, Changzhou city, Jiangsu
21	province, P.R.China 213000
22	h Department of Radiology, Zhongda Hospital Affiliated to Southeast University, Nanjing city,

- 23 Jiangsu province, P.R.China 210000
- 24
- [#] These authors contributed equally to this work.
- 26 * Corresponding Author
- 27
- 28 Corresponding Author 1
- 29 Yonggang Li Ph.D.
- 30 e-mail: liyonggang224@163.com
- telephone number: 0086-512-67780155
- 32 fax number: 0086-512-65228072
- 33 correspondence address: Department of Radiology, the First Affiliated Hospital of Soochow
- 34 University, Suzhou, Jiangsu, P.R.China 215000
- 35
- 36 Corresponding Author 2
- 37 Min Li M.D.
- 38 e-mail: 105549156@qq.com
- 39 telephone number: 0086-512-67780633
- 40 fax number: 0086-512-67780633
- 41 correspondence address: Department of Radiology, The Affiliated Infectious Diseases Hospital of
- 42 Soochow University, Suzhou city, Jiangsu province, P.R.China 215000
- 43
- 44 Corresponding Author 3
- 45 Jinping Wu M.D.

- 46 e-mail: czwjp@sina.com
- 47 telephone number: 0086-519-82009212
- 48 fax number: 0086-519-82009212
- 49 correspondence address: Department of Radiology, the Third People Hospital of Changzhou,
- 50 Changzhou city, Jiangsu province, P.R.China 213000
- 51
- 52 Corresponding Author 4
- 53 Qiuzhen Xu M.D.
- 54 e-mail: xuqiuzhen831@sina.com
- 55 correspondence address: Department of Radiology, Zhongda Hospital Affiliated to Southeast
- 56 University, Nanjing city, Jiangsu province, P.R.China 210000
- 57

58 ABSTRACT

59 Background

60 A pneumonia associated with the coronavirus disease 2019 (COVID-19) recently emerged in

61 China. It was recognized as a global health hazard.

62 Methods

- 63 234 inpatients with COVID-19 were included. Detailed clinical data, chest HRCT basic
 64 performances and certain signs were recorded, and ground-glass opacity (GGO), consolidation,
- 65 fibrosis and air trapping were quantified. Both clinical types and CT stages were evaluated.

66 **Results**

67 Most patients (approximately 90%) were classified as common type and with epidemiologic 68 history. Fever and cough were main symptoms. Chest CT showed abnormal attenuation in 69 bilateral multiple lung lobes, distributed in the lower and/or periphery of the lungs (94.98%), with 70 multiple shapes. GGO and vascular enhancement sign were most frequent seen, followed by 71 interlobular septal thickening and air bronchus sign as well as consolidation, fibrosis and air 72 trapping. There were significant differences in most of CT signs between different stage groups. 73 The SpO2 and OI were decreased in stage IV, and the CT score of consolidation, fibrosis and air 74 trapping was significantly lower in stage I (P < 0.05). A weak relevance was between the fibrosis 75 score and the value of PaO2 and SpO2 (P < 0.05).

76 Conclusions

Clinical performances of patients with COVID-19, mostly with epidemiologic history and typical
symptoms, were critical valuable in the diagnosis of the COVID-19. While chest HRCT provided
the distribution, shape, attenuation and extent of lung lesions, as well as some typical CT signs of

80	COVID-19	pneumonia.
----	----------	------------

- 81 Keywords SARS-CoV-2, COVID-19, High-resolution CT (HRCT)
- 82

```
83 Introduction
```

84	In December 2019, an outbreak of pneumonia of unknown etiology was reported in Wuhan,
85	Hubei province, China. The Chinese Center for Disease Control and Prevention (CDC) isolated
86	the causative viral pathogen from throat swabs sample of the affected patients. The pathogen was
87	a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by
88	WHO and the disease caused by SARS-CoV-2 was termed as coronavirus disease 2019
89	(COVID-19). Up to February 18, 2020, 58097 laboratory-confirmed cases of COVID-19 and 1870
90	deaths have been reported in China, posing great threats to global public health.
91	SARS-CoV-2, severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle
92	East respiratory syndrome coronavirus (MERS-CoV) ^{[1][2][3]} are subgroups of betacoronavirus
93	genus. As far as we known, the symptoms of COVID-19 range from mild to severe. They can be
94	fever, dry cough, shortness of breath, and in some severe cases, kidney failure or death similar to
95	SARS-CoV infection may occur ^[4] . However, information regarding to the radiological and
96	clinical features of the pneumonia associated with COVID-19 is still scarce, making it difficult for
97	physicians to distinguish the causative agents without genetic related laboratory analysis.
98	Moreover, reverse transcription-polymerase chain reaction (RT-PCR), the gold standard for a
99	confirmative diagnosis of COVID-19, has obvious limitations, such as certain proportion of false
100	negative results, limited sampling method and shortage of kits. Computed tomography (CT) of the

101 chest is increasingly recognized as strong evidence for early diagnosis, because the changes in

110	Patients and clinical data
109	METHODS
108	
107	COVID-19, who were admitted to the designated hospitals in Jiangsu province, China.
106	describing the comprehensive chest CT characteristics and clinical features of patients with
105	the comprehension of the newly-emerged diseases in order to make the diagnosis earlier, by
104	considerable larger sample size in this retrospective study. The purpose of the study is to improve
103	cases were included in previous studies ^[5] , we set up a Jiangsu multi-center study, to collect a
102	chest imaging sometimes maybe earlier than clinical symptoms. Considering that fewer confirmed

111 This study was conducted in accordance with the amended Declaration of Helsinki. 112 Independent ethics committees approved the protocol, and written informed consent was obtained 113 from all patients. This was a multi-centered study included 234 inpatients from 13 hospitals during 114 17 days (from January 10th to February 7th 2020) in Jiangsu. All the cases were confirmed with 115 the criteria for SARS-CoV-2 infection established by National Health Commission, which was 116 consistent with one of the following two conditions, based on the pathogenic evidence: 1) positive 117 in real-time fluorescent RT-PCR detection of novel coronavirus nucleic acid in specimens from 118 respiratory tract or blood; 2) virus was highly homologous to the known novel coronavirus in 119 genetic sequencing analyses in specimens from respiratory tract or blood. All the cases underwent 120 an additional microbiological evaluation for ruling out other suspected respiratory infections. 121 Those with a proved additional concurrent acute illness or other preexisting medical conditions 122 were also excluded.

123 Clinical data were recorded, containing age, gender, occupation, epidemic history and disease

124	severity. Present history, symptoms and signs, blood routine outcomes and therapeutic schedules
125	were also recorded. There were four clinical types according to the severity of disease mild type,
126	subtle or mild clinical symptoms and no pneumonia found on CT images; common type, fever or
127	respiratory symptoms, etc. and pneumonia observed on CT images; severe type, fulfil any one of
128	the following conditions 1) respiratory distress, respiratory rate (RR) \geq 30 times per minute, 2)
129	resting state oxygen saturation (SpO2) \leq 93%, or 3) oxygenation index (OI) (calculated by partial
130	pressure of oxygen (PaO2)/fraction of inspired oxygen (FiO2)) <300mmHg (1mmHg=0.133kPa);
131	critical severe type, fulfil any one of the following conditions 1) respiratory failure and
132	mechanical ventilation needed, 2) shock, 3) combined failure of other organ and ICU monitoring
133	and treatment needed.

134 CT scanning

135 Each subject underwent chest high-resolution CT (HRCT) examination within 24 hours after admission. Inspiratory phase of chest HRCT examination was performed during a single-breath 136 137 hold at full inspiration. The CT scanner models from the hospitals involved in this multicenter 138 study were listed as following: GE Bright Speed Elite 16, Neusoft 16, SOMATOM Emotion, 139 SOMATOM definition AS, PHLIPS MX-16, Philips 64-row spiral Ingenuity and the UNITED 140 IMAGING Elite 16. The scanning parameters were as following: tube voltage 120kV, tube current 141 110mA, pitch 1.0, rotation time ranging from 0.5s to 0.75s, slice thickness 5mm, with 1mm or 142 1.5mm section thickness for axial, coronal and sagittal reconstructions.

143 CT evaluation

144 Two experienced attending radiologists, blinded to the clinical information, separately 145 reviewed and scored the CT images. The expert group, containing 3 senior radiologists with

146	working experience more than 10 years, would make the final decision if there is a divergent
147	opinion between the two attending.
148	1. Basic CT performances
149	The distribution features and the shape of abnormal attenuation, as well as the involved lung
150	lobes, were recorded. If there were any common accompanying diseases of lung, such as obsolete
151	pulmonary tuberculosis, emphysema, bronchiectasia, tumor and others, they would be recorded.
152	2. Certain CT signs
153	The following CT performances were judged and recorded as 0 or 1 (0 for none, 1 for yes),
154	including vascular enhancement sign (VES, vascular enlargement inside the lesion resulted from
155	congestion and dilation of small vessels), air bronchus sign, reticular/mosaic sign (defined as a
156	collection of innumerable small linear opacities that, by summation, produced an appearance
157	resembling a net ^[6]), bronchial wall thickening, interlobular septal thickening, interlobar fissure
158	displacement, solid nodules, intralesional and/or perilesional bronchiectasis, mediastinal
159	lymphadenopathy, pleural effusion, pleural thickening and pericardial effusion.
160	3. Quantified evaluation
161	The signs of ground-glass opacity (GGO), consolidation, fibrosis and air trapping and were
162	analyzed quantitatively using a radiologic scoring system ranging from 0-25 points, which was an
163	adaptation of the method previously used to describe idiopathic pulmonary fibrosis and SARS ^[7] .
164	Each lung lobe was evaluated by 0-5 points, on the basis of the area involved, with score 0 for
165	normal performance, 1 for less than 5% of lung lobe areas involved, 2 for 6%-25%, 3 for 26%-
166	50%, 4 for 51%–75%, and 5 for more than 75%. A total score was eventually recorded via the

addition of the score of each lobe.

168 4. CT stages

169	According to the performances of CT images, the cases were classified into four stages -
170	stage I (early stage), stage II (progressive stage), stage III (recovery stage), and stage IV (severe
171	stage). The classification method was mainly according to the following CT performances. Stage I:
172	single or multiple lesions, in irregular, round-like or patchy shapes, generally not involved the
173	whole lung segment, often showed GGO with vascular enlargement. Stage II: more extensive
174	lesions, involved bilateral multiple lobes predominantly in the sub-pleural areas, in irregular,
175	round-like, patchy and "anti-butterfly" shapes, scattered or diffused patches even fusing into large
176	patches with density increased, often with vascular enlargement, reticular sign and bronchial wall
177	thickening, occasionally with less fibrosis and sub-segment atelectasis. Stage III: the lesions
178	absorbed and diminished, the focus can be completely absorbed, with residual fiber stripes. Stage
179	IV: bilateral diffuse lesions, more than half of the lung field involved, even extended to the whole
180	lung and presented as "white lung".

181 Statistical analysis

The statistical analyses were performed by Statistical Product and Service Software (SPSS 182 183 ver. 26.0, Chicago, IL, USA). Descriptive statistics was used in clinical data and some basic 184 information of CT images. Pearson Chi-square test and Fisher exact probability test were used in 185 dichotomous variables (0 or 1) to test the differences of these variables among different CT stages 186 groups. Kruskal-Wallis H test was used to test the group differences of multiple quantitative 187 variables (arterial blood gas (ABG) analysis results and CT scoring). Spearman rank correlation 188 was used to measure the degree of association between the arterial blood gas (ABG) analysis 189 results and CT scoring. A P value less than 0.05 was considered statistically significant and 190 Bonferroni correction was used to adjust P values in multiple comparisons. The mean values were

191 showed as MEAN \pm SE.

192

```
193 Results
```

```
194 Clinical data
```

195 234 patients infected with SARS-CoV-2 confirmed by real time RT-PCR were included in this 196 study, among which 6 patients were with initial RT-PCR negative and follow-up test positive. 197 There were 136 (58.1%) men and 98 (41.9%) women, with average age (44.6±14.8) years old 198 (ranging from 7 to 82 years old). The age and occupation distribution of the patients were showed 199 in Table-1. Stuff was the most frequency occupation (46.2%) in this study. Approximately 90% 200 patients had epidemiologic linkage to Hubei Province or closely contacted with other confirmed 201 cases and almost 90% patients were classified as common type, as showed in Table-1.

202 Fever (72.6%) and cough (64.1%) were main symptoms of patients infected with SARS-CoV-2. There were some other symptoms such as pharyngeal discomfort (15%), fatigue 203 204 (13.2%), chill (9.8%), muscle ache (9.0%), rhinobyon and snivel (5.6%), diarrhea (3.8%), chest 205 pain (3.4%), chest tightness (5.6%), short of breath (2.1%), difficulty breathing (3%) and nausea 206 and vomiting (2.1%). Most of patients were with normal range of leukocytes count, neutrophils 207 count, lymphocytes count, neutrophil ratio and lymphocyte ratio in the first blood routine 208 examination during hospitalization. The proportion of normal cases were respectively occupied 209 75.1%, 81.7%, 82.6% and 59.7% of all the patients. As to the therapy schedules, each patient was 210 received an antiviral therapy (oral or intravenous antiviral drugs, and inhalation of interferon). 211 Antibiotics was administered in 118 (50.4%) patients to prevent or treat concomitant bacterial

212	infection, methylprednisolone in 34 (14.5%) to suppress the inflammatory response, gamma
213	globulin in 34 (14.5%) to boost immunity, and non-invasive ventilator was used in 11 (4.7%)
214	cases (severe or critical severe patients).
215	Chest CT analysis
216	1. Basic CT performances and CT stages
217	15 (6.4%) patients were without abnormal lung changes by Chest HRCT examination, hence
218	the CT images of 219 patients were analyzed. 192 cases were with bilateral multiple lung lobes
219	involved (87.67%, 192/219), of which 121 cases (63.02%, 121/192) were involved with whole
220	lung. Merely 16 cases (7.31%, 16/219) were involved with single lobe. 208 cases (94.98%,
221	208/219) were mainly distributed in the lower lungs and/or the periphery of the lungs. The shape
222	of the lesions was mainly irregular (88.13%, 193/219), followed by small patches (86.3%,
223	189/219), strip-like (69.41%, 152/219), round-like (49.32%, 108/219) and "anti-butterfly"
224	(47.95%, 105/219). 60 patients (27.4%, 60/219) were with common accompanying diseases of
225	lung, of which emphysema (including localized emphysema) and bullae was the most common
226	(88.33%, 53/60), followed by bronchiectasia (16.67%, 10/60).
227	According to the performance of chest CT, the patients were divided into stage I-IV, as the
228	cases showed in Figure-1, Figure-2, Figure-3 and Figure-4. 80 cases (36.53%, 80/219) were
229	classified into stage I group, 86 cases (39.27%, 86/219) into stage II group, 43 cases (24.2%,
230	43/219) into stage III group and 10 cases (4.57%, 10/ 219) into stage IV.
231	2. Certain CT signs
232	Among the 219 patients with positive chest HRCT performances, 207 cases were with VES,
233	205 with interlobular septal thickening, 184 with air bronchus sign, 173 with intralesional and/or

234	perilesional bronchiectasis, 170 with pleural thickening, 138 with solid nodules, 135 with
235	reticular/mosaic sign, 124 with interlobar fissure displacement, 76 with bronchial wall thickening,
236	29 with minor pleural effusion and pericardial effusion, 21 with mediastinal lymphadenopathy.
237	The frequency of VES was the highest, but there was no significant difference among the
238	four stage groups, as showed in Table-2. The frequency of interlobular septal thickening, air
239	bronchus sign and intralesional and/or perilesional bronchiectasis in stage I was significantly
240	lower than that in stage II and stage III ($P < 0.008$). The frequency of reticular sign, pleural
241	thickening and interlobar fissure displacement was the lowest in stage I ($P < 0.008$). The
242	frequency of solid nodules in stage IV was significantly higher than that in stage 1 ($P < 0.008$).
243	The frequency of bronchial wall thickening was lower in stage I than that in stage III and stage IV
244	(<i>P</i> < 0.008).
245	The frequency of pleural effusion, pericardial effusion and mediastinal lymphadenopathy was
246	relatively small. The frequency of pleural effusion was lower in stage I than that in stage III and
247	stage IV, and it was also lower in stage II than that in stage IV ($P < 0.008$). The frequency of
248	mediastinal lymphadenopathy was lower in stage I than that in stage III ($P < 0.008$). There was no
249	significant difference of the frequency of pericardial effusion among the four groups.
250	Analysis about clinical and CT quantified data
251	1. Multiple comparisons among stage I-IV groups
252	As to the group differences of indices from ABG analysis, the SpO2 ((94.70 \pm 0.20)%) of
253	patients in stage IV group was significantly lower than that ((97.2 \pm 0.91)%) in stage II group, and
254	the OI ((200.25 \pm 24.75) mmHg) of patients in stage IV was lower than that ((470.71 \pm 38.81)
255	mmHg) in stage I (P < 0.05) (Table-3). There were no significant differences of RR and PaO2 among

256	stage I-IV	groups	(P>	0.05).
-----	------------	--------	-----	--------

257	As to the group differences of CT scores, the CT score of consolidation (5.71 \pm 0.42) in stage
258	I was significantly lower than those in other three groups (respectively 7.06 ± 0.49 , 7.60 ± 0.66 ,
259	8.30 ± 1.72), and the CT score of fibrosis (1.98 ±0.24) in stage I was significantly lower than
260	those in stage II (3.00 \pm 0.26) and III (4.12 \pm 0.41) ($P < 0.05$). The air trapping score (0.35 \pm 0.10)
261	of inspiratory phase of chest CT was lower in stage I than that in stage IV (1.5 \pm 0.76) (P < 0.05)
262	(Table-3). The GGO score was higher than consolidation, fibrosis and air trapping scores of all the
263	patients, however, there was no significant difference of GGO score among CT stages ($P > 0.05$).
264	2. Correlation analysis
264 265	2. Correlation analysis There were significant correlations among the ABG analysis indices - PaO2, SpO2 and OI, as
265	There were significant correlations among the ABG analysis indices - PaO2, SpO2 and OI, as
265 266	There were significant correlations among the ABG analysis indices - PaO2, SpO2 and OI, as well as among the CT scores of GGO, consolidation, fibrosis and air trapping. However, there
265 266 267	There were significant correlations among the ABG analysis indices - PaO2, SpO2 and OI, as well as among the CT scores of GGO, consolidation, fibrosis and air trapping. However, there were no correlations between the ABG analysis indices and CT scores ($P > 0.05$), except the weak

270 Discussion

The SARS-CoV-2 infection is recognized as a global health hazard. The disease is highly infectious. It is suspected that infection is transmitted by means of large-particle respiratory droplets produced by coughing or touch contamination; hence, good respiratory and hand hygiene is important^[8].

A greater number of men (58.1%, 136/234) was found than that of women (41.9%, 98/234), which was similar to previous studies^[9]. The reduced susceptibility of females to viral infections might be attributed to the protection from X chromosome and sex hormones, which play an

278	important role in innate and adaptive immunity ^[10] . Almost 90% patients in present study were
279	classified as common type. Fever and cough were main symptoms. However, some patients
280	presented initially with atypical symptoms, such as diarrhea, nausea and vomiting. A large
281	proportion of patients was with normal blood routine examination. Up to February 18, 2020, a
282	total of 629 COVID-19 confirmed cases have been reported without death in Jiangsu Province,
283	compared to Hubei Province 59989 cases with 1789 death. Most cases in Jiangsu were with mild
284	clinical symptoms and approximately 90% patients had epidemiologic linkage to Hubei Province
285	or closely contacted with other confirmed cases in present study, suggesting that the virus may
286	mutate to produce the first generation, the second generation and so on, with the longer the
287	mutation time, the lower the toxicity, as the MERS-CoV ^{[11][12]} . Because of the relatively lower
288	toxicity, clinical symptoms are slight and the prognosis is relatively good.
289	As SARS-CoV-2 is highly contagious and with a high incidence, early detection is of great
289 290	As SARS-CoV-2 is highly contagious and with a high incidence, early detection is of great importance. Chest HRCT is a critical screening method for COVID-19 due to its high sensitivity
290	importance. Chest HRCT is a critical screening method for COVID-19 due to its high sensitivity
290 291	importance. Chest HRCT is a critical screening method for COVID-19 due to its high sensitivity and convenience, although 15 patients with COVID-19 were without abnormal lung changes on
290 291 292	importance. Chest HRCT is a critical screening method for COVID-19 due to its high sensitivity and convenience, although 15 patients with COVID-19 were without abnormal lung changes on initial CT images in present study. Additionally, 6 patients were with pneumonia detected by
290 291 292 293	importance. Chest HRCT is a critical screening method for COVID-19 due to its high sensitivity and convenience, although 15 patients with COVID-19 were without abnormal lung changes on initial CT images in present study. Additionally, 6 patients were with pneumonia detected by HRCT, but initial RT-PCR was negative with follow-up test positive. These results suggest that
290 291 292 293 294	importance. Chest HRCT is a critical screening method for COVID-19 due to its high sensitivity and convenience, although 15 patients with COVID-19 were without abnormal lung changes on initial CT images in present study. Additionally, 6 patients were with pneumonia detected by HRCT, but initial RT-PCR was negative with follow-up test positive. These results suggest that both chest HRCT examination and RT-PCR detection of novel coronavirus nucleic acid have
290 291 292 293 294 295	importance. Chest HRCT is a critical screening method for COVID-19 due to its high sensitivity and convenience, although 15 patients with COVID-19 were without abnormal lung changes on initial CT images in present study. Additionally, 6 patients were with pneumonia detected by HRCT, but initial RT-PCR was negative with follow-up test positive. These results suggest that both chest HRCT examination and RT-PCR detection of novel coronavirus nucleic acid have limitations which inevitably lead to false-negative. In the follow-up of the initial negative CT
290 291 292 293 294 295 296	importance. Chest HRCT is a critical screening method for COVID-19 due to its high sensitivity and convenience, although 15 patients with COVID-19 were without abnormal lung changes on initial CT images in present study. Additionally, 6 patients were with pneumonia detected by HRCT, but initial RT-PCR was negative with follow-up test positive. These results suggest that both chest HRCT examination and RT-PCR detection of novel coronavirus nucleic acid have limitations which inevitably lead to false-negative. In the follow-up of the initial negative CT cases, pneumonia will be emerged in some patients, while the initial negative RT-PCR cases will

300	There are some typical findings on CT images. The abnormal attenuations are highly
301	frequently located in bilateral multiple lung lobes and distributed in the lower and/or periphery of
302	the lungs, with the shape of irregular, small patches, strip-like, round-like and "anti-butterfly".
303	VES was the most frequent sign, followed by interlobular septal thickening, air bronchus sign,
304	intralesional and/or perilesional bronchiectasis, pleural thickening, solid nodules, reticular/mosaic
305	sign, etc. These CT performances of COVID-19 were similar to previous studies ^{[5][13]} . In addition,
306	a few cases of mediastinal lymph node enlargement, pleural effusion and pericardial effusion were
307	found in present study, which were not reported yet. It may be due to the relatively small sample
308	size of previous study. Furthermore, there are group differences of some CT signs among different
309	CT stages, though GGOs and VES sign were most frequently seen in each CT stages without
310	group differences in patients with COVID-19 pneumonia. In the early stage, interlobular septal
311	thickening, air bronchus sign, intralesional and/or perilesional bronchiectasis and bronchial wall
312	thickening was less seen than that in progressive stage. The reticular sign, pleural thickening and
313	interlobar fissure displacement was not common in early stage. The frequency of pleural effusion,
314	pericardial effusion and mediastinal lymphadenopathy was relatively small. The quantified
315	evaluation of CT images demonstrated that consolidation, fibrosis and air trapping were minor in
316	the early stage. These results suggest that each CT stage has its characteristic CT signs and
317	performances, making it possible to radiologists and physicians to quickly obtained the stage of
318	the pneumonia.

As to the ABG results, the SpO2 and OI decreased in patients with severe stage than early or progressed stage, which were in consistence with the alteration of indices in patients with severe or critical severe clinical type. In the severe stage of CT, the bilateral diffuse parenchymal

322	abnormalities were mainly GGO lesions, with consolidation, fibrosis and air trapping. It might
323	demonstrate the severity of pulmonary dysfunction caused by SARS-CoV-2 infection. While the
324	fibrosis score was higher in the recovery stage, which might indicate an improvement of the
325	disease. And a weak positive relevance was found between the fibrosis score and ABG indices
326	(PaO2 and SpO2), that was, a patient with higher fibrosis score tended to have better ABG results,
327	suggesting that fibrosis score may be a potential index in the prognosis of the disease.
328	There were several limitations in this study. First, the patients underwent the CT scans with
329	different machine type, due to the multiple centers in the study. The heterogeneity of the CT data
330	may affect the results of the study. Second, none of the patients underwent a lung biopsy or
331	autopsy, because of the comparatively better outcomes of the patients in this study. Therefore, the
332	CT findings of the lung could not be verified by histopathology. Finally, this was a retrospective
333	study with initial CT images during hospitalization, mainly demonstrated the early pulmonary
334	lesions in patients with COVID-19. A further longitudinal research was needed to focus on the
335	long-term follow-up, to provide dynamic CT evaluation for pulmonary lesions and to obtain the
336	data of long-term pulmonary function changes.
337	In conclusion, clinical performances of patients with COVID-19, mostly with epidemiologic
338	history and typical symptoms, were critical valuable in the diagnosis of the COVID-19. While
339	chest HRCT provided the distribution, shape, attenuation and extent of lung lesions, as well as
340	some typical CT signs of COVID-19 pneumonia.
341	

342 Acknowledgments

343 This work was mainly supported by the National Natural Science Foundation of China (grant

350	Ethical Approval	
349	(WSW-057).	
348	(LGY2016035) and Program for Advanced Talents within Six	Industries of Jiangsu Province
347	(QNRC2016709), the High-level Health Personnel "six-one"	Project of Jiangsu Province
346	Health Care through Science, Technology and Education, Jiangsu F	Provincial Medical Youth Talent
345	Health and Family Planning Commission of Suzhou (LCZX2018)	01), the Project of Invigorating
344	number 81971573, 81671743), the Clinical Key diseases diagnosis	s and therapy Special project of

Independent ethics committees approved the protocol, and the approval number was respectively 2020 the 30th, 2020001, 2020 the 2th, KY 202000701, E2020002, 2020ZDSYLL016-P01, 02A-A2020002, 202002, 2020 the 6th, 20200217, 2020-SL-0004.

355		References
356	[1]	Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C,
357		Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J,
358		Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW,
359		Bellini WJ, Anderson LJ; SARS Working Group. A novel coronavirus associated with
360		severe acute respiratory syndrome. N Engl J Med 2003; 348:1953-66.
361	[2]	K Kuiken T, Fouchier RA, Schutten M, Rimmelzwaan GF, van Amerongen G, van Riel
362		D, Laman JD, de Jong T, van Doornum G, Lim W, Ling AE, Chan PK, Tam JS, Zambon
363		MC, Gopal R, Drosten C, van der Werf S, Escriou N, Manuguerra JC, Stöhr K, Peiris JS,
364		Osterhaus AD. Lancet 2003 ; 362:263–70.
365	[3]	de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L, Fouchier RA,
366		Galiano M, Gorbalenya AE, Memish ZA, Perlman S, Poon LL, Snijder EJ, Stephens GM,
367		Woo PC, Zaki AM, Zambon M, Ziebuhr J. Middle East respiratory syndrome
368		coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol 2013;
369		87:7790–92.
370	[4]	Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu
371		T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang
372		G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019
373		novel coronavirus in Wuhan, China.Lancet 2020 ;395:497-506.
374	[5]	Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, Cui J, Xu W, Yang Y, Fayad
375		ZA, Jacobi A, Li K, Li S, Shan H. CT Imaging Features of 2019 Novel Coronavirus
376		(COVID-19). Radiology.2020;200230. [Preprint]. Available from: https://

377		doi.org/10.1148/radiol.2020200230.
378	[6]	Yun TJ, Park CM, Kwon GJ, Woo SK, Park SH, Choi SH, Lee HJ, Goo JM. Clinical and
379		radiological features of pandemic H1N1 2009 influenza virus infection manifesting as
380		acute febrile respiratory illness at their initial presentations: comparison with
381		contemporaneous non-H1N1 patients. Acta Radiol 2011;52:410-416.
382	[7]	Ng CK, Chan JW, Kwan TL, To TS, Chan YH, Ng FY, Mok TY. Six month radiological
383		and physiological outcomes in severe acute respiratory syndrome (SARS) survivors.
384		Thorax 2004 ;59:889–91.
385	[8]	Swerdlow DL. Preparation for Possible Sustained Transmission of 2019 Novel
386		Coronavirus: Lessons From Previous Epidemics. JAMA 2020. [Preprint]. Available
387		from: https://doi.org/10.1001/jama.2020.1960.
388	[9]	Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu
389		T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019
390		novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet
391		2020 ;395:507-513.
392	[10]	Jaillon S, Berthenet K, Garlanda C. Sexual dimorphism in innate immunity. Clin Rev
393		Allergy Immunol 2019 ; 56:308–21
394	[11]	Poletto C, Colizza V. Quantifying spatiotemporal heterogeneity of MERS-CoV
395		transmission in the Middle East region: A combined modelling approach. Epidemics.
396		2016 ;15:1-9.
397	[12]	Drosten C, Meyer B, Müller MA, Corman VM, Al-Masri M, Hossain R, Madani H,
398		Sieberg A, Bosch BJ, Lattwein E, Alhakeem RF, Assiri AM, Hajomar W, Albarrak AM,

- Al-Tawfiq JA, Zumla AI, Memish ZA. Transmission of MERS-coronavirus in household
 contacts. N Engl J Med .2014;371:828-835.
- 401 [13] Chest CT Findings in 2019 Novel Coronavirus (2019-nCoV) Infections from Wuhan,
- 402 China: Key Points for the Radiologist. Radiology **2020**;200241 [Preprint]. Available
- 403 from:https://doi.org/10.1148/radiol.2020200241.

Items	Sub-items	Case distribution		
Age (years)	0-9	1(0.4%)		
	10-19	4(1.7%)		
	20-29	38(16.2%)		
	30-39	52(22.2%)		
	40-49	47(20.1%)		
	50-59	54(23.1%)		
	60-69	30(12.8%)		
	70-79	7(3.0%)		
	80-89	1 (0.4%)		
Gender	Men	136(58.1%)		
	Woman	98 (41.9%)		
Occupation	None	26(11.1%)		
	Stuff	108 (46.2%)		
	Student	11 (4.7%)		
	Medical staff	3(1.3%)		
	Farmer	26(11.1%)		
	Others	60(25.6%)		
Epidemic history	epidemiologic linkage to Hubei Province	133 (56.8%)		
	epidemiologic linkage to other confirmed cases,			
	without traveling to Hubei	78(33.3%)		
	None	23 (9.8%)		
Disease severity	Mild	9 (3.9%)		

Table-1 Demographics of 234 patients infected with SARS-CoV-2 in Jiangsu, China

Common	210 (89.7%)
Severe	13(5.5%)
Critical severe	2(0.9%)

	I-II		I-III		I-IV		II-III		II-IV		III-IV	
	Р	χ2	Р	χ2	Р	χ2	Р	χ2	Р	χ2	Р	χ2
VES	0.051	4.312	0.303	1.071	0.298	1.098	0.474	0.516	0.628	0.238	0.491	0.483
Air bronchus	0.000	36.033	0.001	11.118	0.018	5.625	0.025	5.098	0.733	0.118	0.320	1.006
Reticular sign	0.000	33.007	0.001	11.837	0.000	15.395	0.151	2.078	0.110	2.576	0.037	4.425
BWT	0.273	1.209	0.001	10.999	0.002	9.256	0.016	5.895	0.016	5.837	0.347	0.900
IST	0.000	16.436	0.004	8.492	0.152	2.072						
IFD	0.000	48.945	0.000	32.987	0.000	26.250	0.886	0.021	0.079	3.126	0.075	3.228
Solid nodules	0.136	2.238	0.036	4.450	0.004	8.221	0.357	0.855	0.022	5.324	0.060	3.607
Bronchiectasis [*]	0.000	25.624	0.000	20.328	0.041	4.219	0.354	0.867	0.943	0.005	0.514	0.435
Pleural	0.000	26.495	0.000	19.657	0.005	7.854	0.522	0.413	0.285	1.155	0.394	0.740
MI	0.040	4.250	0.002	9.712	0.012	6.410	0.199	1.660	0.373	0.803	0.920	0.010
Pleural effusion	0.014	6.081	0.000	15.763	0.000	27.960	0.070	3.315	0.003	8.930	0.133	2.295
Pericardial	0.682	0.169	0.564	0.335	0.140	2.203	0.347	0.892	0.079	3.126	0.322	0.998

Table-2 Comparison of the frequency of HRCT signs among different CT stages

Note: VES- Vascular enhancement sign, Bronchiectasis*-intralesional and/or perilesional bronchiectasis, BWS-Bronchial wall

thickening, IST-Interlobular septal thickening, IFD- Interlobar fissure displacement, MI- Mediastinal lymphadenopathy;

"--" in the row of IST without exact number is due to that IST variable was considered as a constant for the identical component

ratio of stage II, III and IV.

	I-II		I-III		I-IV		II-III		II-IV		III-IV	
	Р	Z	Р	Z	Р	Z	Р	Z	Р	Z	Р	Z
SpO2	0.846	-1.472	1.000	0.071	0.083	2.463	0.806	1.497	0.008	3.200	0.096	2.408
OI	0.414	1.818	0.963	1.404	0.009	3.176	1.000	-0.067	0.229	2.073	0.453	1.778
Consolidation	0.001	-3.820	0.009	-3.165	0.191	-2.147	1.000	-0.027	1.000	-0.379	1.000	-0.346
Fibrosis	0.021	-2.917	0.000	-4.520	0.470	-1.760	0.189	-2.150	1.000	-0.411	1.000	0.752
Air trapping	1.000	-0.737	0.544	-1.692	0.045	-2.675	1.000	-1.100	0.115	-2.343	0.601	-1.644

Table-3 The group differences of SpO2, OI, and CT scores of consolidation, fibrosis and air trapping

Note: SpO2, oxygen saturation; OI, oxygenation index

Table-4 The correlations between ABG analysis indices and CT scores

	G	GO	Consol	lidation	Fib	rosis	Air trapping		
	Р	r	Р	r	Р	r	Р	r	
RR	0.948	0.006	0.229	0.103	0.842	-0.017	0.896	0.011	
PaO2	0.459	0.068	0.202	0.118	0.017	0.218	0.118	0.144	
SpO2	0.752	0.031	0.089	0.164	0.032	0.206	0.115	0.235	
OI	0.167	0.217	0.740	-0.053	0.571	0.090	0.989	-0.002	

Note: ABG, arterial blood gas; GGO, ground-glass opacity; RR, respiratory rate; PaO2, partial pressure of oxygen; SpO2, oxygen

saturation; OI, oxygenation index

Figure legends

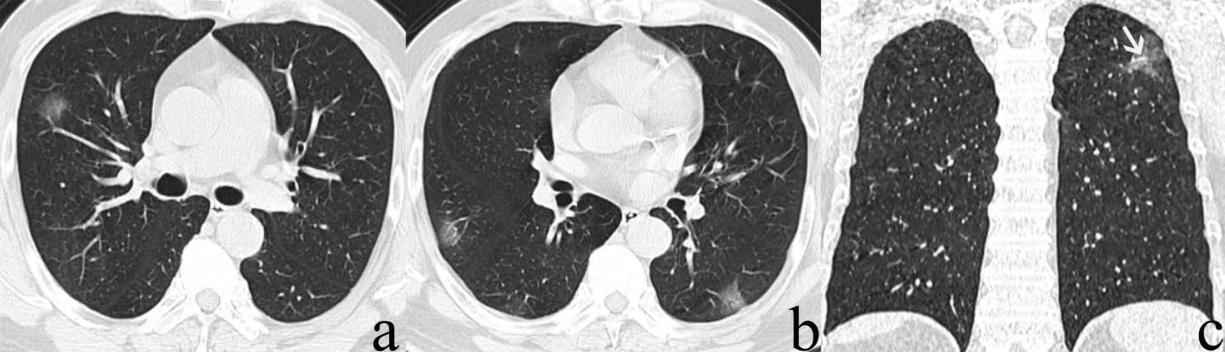
Figure-1 a–c. A 53-year-old man with COVID-19 in stage I. Chest axial HRCT images a and b show irregular and round-like GGO in bilateral multiple lobes. Coronal reconstruction image c shows VES in the irregular lesion of left upper lung (arrow).

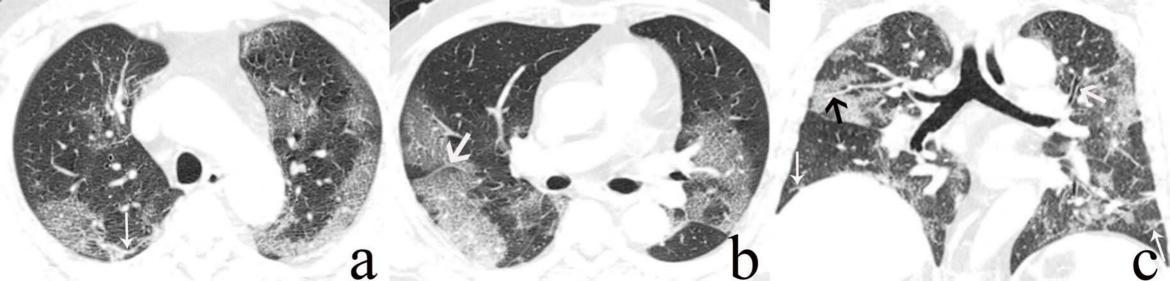
Figure-2. a-c. A 56-year-old man with COVID-19 in stage II. Chest HRCT images a-c show multiple "anti-butterfly" -shaped and irregular GGO with reticular sign in bilateral lungs. Axial CT image b shows the displacement of right interlobar fissure (arrow). Bronchial wall thickening in left upper lung (white arrow) and VES (black arrow) in middle lobe of right lung can be seen on coronal reconstruction CT image c. A few fibrosis (linear arrow) can be seen in bilateral lungs on image a and c.

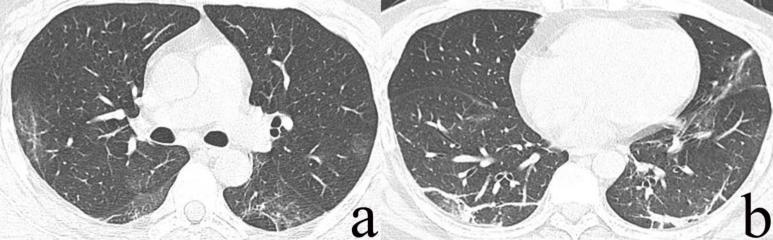
Figure-3. a, b. A 43-year-old man with COVID-19 in stage III. Chest HRCT images show that the lesions absorbed with multiple residual fiber stripes in both lungs, mainly in the lower lung lobes.Figure-4. a, b. A 73-year-old man with COVID-19 in stage IV. Chest HRCT images show bilateral diffuse pneumonia with air bronchus sign.

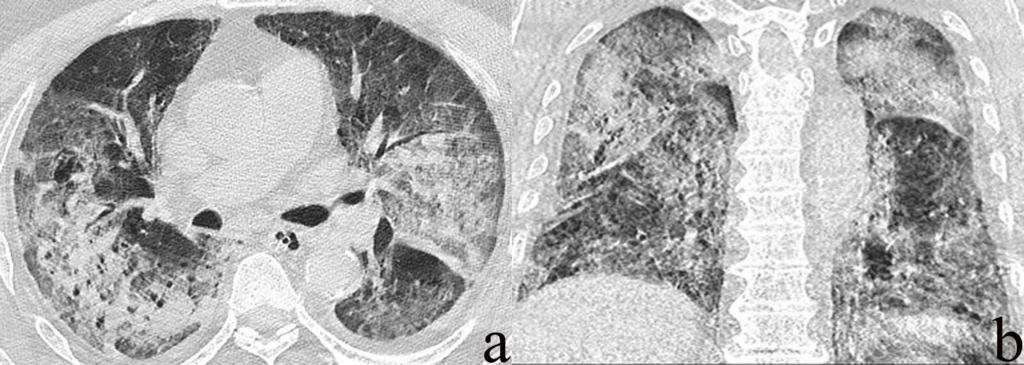
Highlights

1. An outbreak of pneumonia of COVID-19 was recently reported in China, with highly infectious.


2. This was a multi-centered study included 234 inpatients confirmed with COVID-19 from 13 hospitals during 17 days (from January 10th to February 7th 2020) in Jiangsu province. Most of these cases were introduced from Wuhan, and they might have some distinctive clinical and imaging features.


3. The comprehensive chest CT characteristics and clinical features of patients with COVID-19 were described in this study.


Conflict of interest


No conflict of interest exits in the submission of this manuscript.

outral eros

